
SAHIL DHONDIRAM DHANAVADE

sahildhanavade769@gmail.com | (+91) 9527552188

 @sahildhanawadeofficial

SKILLS

❖ Python

❖ HTML, CSS, Javascript

❖ PHP

❖ MySQL

❖ Node js

❖ React js

❖ Next js

❖ MongoDb

❖ Git GITHUB

❖ Docker

❖ Kubernetes

❖ CICD Pipeline

❖ Argocd

❖ Grafana

❖ ShellScript

❖ NGINX

❖ AWS :- S3bucket, Cloudfront, aws global accelerator, load

balancers(NLB,ALB), target group, route53, etc

❖ Google Cloud :- Running kubernetes cluster on GCloud using

It’s free credits

 /in/sahildhanavade

https://github.com/shradha-khapra
https://github.com/sahildhanawadeofficial
https://www.linkedin.com/in/sahildhanavade

EDUCATION

❖ MCA (Master in computer Application) (currently pursuing)

❖ Savitribai Phule Pune University (B.com) 6.4 CGPA

❖ XII (kendriya Vidyalaya) (CBSE) (Commerce Stream) | School

78.4%

❖ X (kendriya Vidyalaya) (CBSE) | School 78.4%

ACHIEVEMENTS / HOBBIES

● Self-taught coding over the past three years and developed

storechoose.com, an e-commerce store builder (full details mentioned

in the resume projects section).

● Grew a YouTube channel(@sahildhanawade) to 12,100 subscribers

by creating and sharing my cycling stunt videos.

Projects Made By Me (All the work you see here is done solely by me.)

❖ Business Website:- https://jdbinterior.netlify.app

❖ Education website for MCQs :- https://1markers.vercel.app

• Developed an MCQ-based learning platform using Next.js
for a seamless front-end and back-end integration.

• Designed a user-friendly interface enabling students to
study MCQs, take tests, and analyze their performance via
a dedicated Performance tab.

• Implemented secure user authentication and session
management using NextAuth.

• Utilized MongoDB for efficient data storage, ensuring
reliable and scalable management of test data and user
performance metrics.

• Hosted the platform on Vercel.

❖ Ecommerce Website :- https://upmystandard.vercel.app

https://www.youtube.com/@sahildhanawade/featured
https://jdbinterior.netlify.app/
https://1markers.vercel.app/
https://upmystandard.vercel.app/

• Developed a dynamic e-commerce platform using Next.js for
the front-end and back-end integration.

• Designed an innovative product card UI, allowing users to
view product variants (e.g., size, color) and dynamically fetch
images without navigating to a separate product page.

• Integrated a reviews feature for user feedback directly within
the product card.

• Built a comprehensive admin panel enabling store owners to:

• Add and edit products with custom option sets, such as
size and color for t-shirts or processor, RAM, and storage
for mobile phones.

• User Management :- Manage user roles and assign
specific access to employees for tasks like adding or
updating products.

• Implemented dynamic category creation, where categories
and corresponding filters are automatically added to the
navigation bar and side panel as new products are added to the
database.

• Utilized MongoDB for scalable and efficient data management,
ensuring seamless product and user data handling.

• Hosted the platform on Vercel, ensuring high performance,

scalability, and global accessibility.

❖ StoreChoose.com A Store Builder:- https://storechoose.com

Fully developed and ready to launch, currently not live due to

GKE(Google Kubernetes Cluster) hosting costs.

How to Use StoreChoose.com (Hindi Video Tutorial):

https://youtu.be/5v1SFy4WqNo?si=xRL50wg-ucfRRCTG

 Overview:

• Developed Storechoose.com, a platform that enables users

to create and customize their own e-commerce websites and

https://storechoose.com/
https://youtu.be/5v1SFy4WqNo?si=xRL50wg-ucfRRCTG
https://www.youtube.com/watch?v=5v1SFy4WqNo

sell products online. The platform offers a pay-as-you-go

pricing model where users purchase bandwidth for their

stores, and bandwidth is deducted based on incoming traffic.

Unlike other platforms, Storechoose.com charges 0%

commission on sales, payment gateway fees applicable

(Stripe, Razorpay, Paytm, etc.).

• The platform competes directly with Shopify, Dukan, and

Digital Showroom app etc by offering a more flexible pricing

model and efficient use of cloud technologies.

 Key Features:

• Zero Commission: Storechoose.com does not take any

commission from sales; users only pay for bandwidth usage.

• Customizable E-commerce Stores: Users can easily

create and manage their e-commerce store using a user-

friendly interface.

• Bandwidth Deduction: Each store has its own bandwidth

allocation, and as traffic increases, bandwidth is

automatically deducted from the user’s purchased quota.

 Core Technologies:

• Backend:

• Node.js for server-side operations.

• Next.js (version 14) for the storefront.

• MongoDB for data storage, managing user accounts,

store configurations, product catalogs, and bandwidth

usage tracking.

• Caching:

• Dragonfly is used as the in-memory caching solution

within Kubernetes cluster for efficient request

handling.

• ioredis npm package is used for interacting with

Dragonfly.

• SSL Management:

• CertManager in Kubernetes, integrated with Let's

Encrypt, automates the issuance of SSL certificates

for new store domains (e.g., sahil.storechoose.store).

• CI/CD Pipeline:

• DockerHub hosts container images for microservices.

• ArgoCD automatically syncs the changes in the Git

repository (containing Kubernetes YAMLs) with the

live Kubernetes environment. When code is pushed, a

new image is built and tagged with the Git commit

hash, pushed to DockerHub, and deployed in

Kubernetes using ArgoCD.

 Microservices & Key Components:

• StorechooseApp:

• Primary microservice hosting the main platform at

storechoose.com, responsible for user accounts,

store creation, billing, and bandwidth purchase.

• Upmystandardnext14:

• Frontend microservice responsible for serving the

individual e-commerce stores created by users (e.g.,

sahil.storechoose.store,xyzdomain.com). Built using

Next.js, it handles rendering and delivery of the store

pages.

• Paytm and Razorpay payment gateway integrated.

• Shiprocket and Shipstation integrated for shipping.

• Storeuiproxy:

• A Node.js-based HTTP proxy that intercepts incoming

requests for individual store domains (e.g.,

sahil.storechoose.store,xyzdomain.com).

• Caching: Checks Dragonfly cache for the requested

data. If the data is present, it serves it directly from the

cache. Otherwise, it proxies the request to

Upmystandardnext14 (storefront service) and

caches the response.

• TTL Management: It monitors the time-to-live (TTL)

of cached data. If the TTL is about to expire, the data

is refreshed before serving new requests to avoid

stale data.

• Race Conditions Handling: Handles concurrent

requests by ensuring that multiple incoming requests

for the same data don’t result in redundant cache

refresh operations.

• SSLEnable:

• Responsible for dynamically creating SSL certificates

for store domains

(sahil.storechoose.store,xyzdomain.com) using Let’s

Encrypt. HTTP01 challenge is used for generating

SSL certificates for custom domains attached to any

store (Eg:- xyzdomain.com). DNS01 challenge

configured with Route53 is used for wildcard SSL

certificates of domain

(storechoose.store,storechoose.com)

• Runs a periodic job every 30 minutes to check for new

domains, create SSL certificates, and apply them.

• TrafficAndUsageStreamRedis:

• This microservice tracks the bandwidth usage for

stores based on the data cached in Dragonfly(redis

streams).

• For each incoming request, Storeuiproxy logs the

number of bytes served and stores this information in

Dragonfly (using redis streams for it), keyed by the

Store ID.

• Every 5 minutes, TrafficAndUsageStreamRedis

aggregates this data and updates MongoDB with the

total bandwidth consumed by each store.

• TrafficAndUsageStream:

• Similar to the above but focused on tracking

bandwidth for images and other media files served via

AWS CloudFront.

• CloudFront logs the amount of data served for each

media request (known as standard logs).

TrafficAndUsageStream parses these logs, identifies

the Store ID from the file names (media files are

stored with Store IDs), and updates the corresponding

store's bandwidth usage in MongoDB.

 Caching Architecture:

• Dragonfly Caching:

• Storeuiproxy checks Dragonfly for cached responses

before proxying requests to the storefront service

(Upmystandardnext14).

• If data is cached, it is served immediately, reducing

response time and bandwidth usage.

• TTL Management: Storeuiproxy checks the TTL for

cached data on each request for the data to ensure

it's refreshed just before expiration, minimizing

downtime and race conditions.

 Bandwidth Tracking & Management:

• For Cached Data:

• Storeuiproxy records the size of each response (in

bytes) for every request served and logs this in

Dragonfly(redis streams), tagged with the Store ID.

• TrafficAndUsageStreamRedis periodically

aggregates these logs and updates the total

bandwidth used by each store in MongoDB.

• For Media Files (via CloudFront):

• AWS CloudFront is used to serve static media files

(such as images stored in S3 buckets). Each file is

named with the Store ID, so when CloudFront serves

a file, it logs the data usage, which is processed by

TrafficAndUsageStream(micro service) to calculate

the bandwidth consumed by the store.

• The calculated bandwidth is then deducted from the

store’s quota in MongoDB.

 Deployment Architecture:

• Global Load Balancing:

• AWS Global Load Balancer is used to distribute

traffic globally. It forwards requests to an AWS

Network Load Balancer (NLB hosted in a specific

region), which then forwards TCP traffic to the

NGINX proxy using TCP streams (running on ec2)

within a Route Group attached to the Network load

balancer (NLB).

• NGINX (running on ec2) forwards traffic to

Kubernetes cluster running in Google Cloud

Platform (GCP). This setup ensures flexibility for

moving to other cloud providers or bare-metal setups

in the future.

• SSL Termination in Kubernetes:

• SSL termination is handled within the Kubernetes

cluster to maintain flexibility. AWS’s Global Load

Balancer forwards traffic using TCP (Layer 4) to

support this configuration, as GCP’s Global Load

Balancer only forwards HTTPS (Layer 7) traffic,

which would interfere with in-cluster SSL termination.

 Next-Auth package updated:

Separate Database is created for each Store according to

StoreId (eg:- 84af75bf-4ede-4ca7-9519-9d8f13e9ff51)

To dynamically connect to multiple databases based on
storeId in our (Upmystandardnext14 a micro service to
serve store frontends) Next.js application with NextAuth.js, i
initially used the standard MongoDBAdapter function. This
approach, however, resulted in a significant problem: every
time a request was made, it created a separate connection
for each database, which led to numerous open connections,
eventually overwhelming the system.

To solve this, I decided to switch to using the MongoDB
Data API instead of direct connections. The MongoDB Data
API allows us to interact with MongoDB databases via HTTP,
making it a more efficient and scalable solution for our use
case.

The updated MongoDBAdapter function now uses the
MongoDB Data API instead of mongoDb connection to
interact with different databases to handle authentication:

1. Dynamically route requests to the correct database
based on storeId.

2. Eliminate the need for multiple open connections by
relying on the stateless HTTP-based Data API.

3. Ensure that the application can scale without hitting
connection limits or performance bottlenecks.

This shift from direct database connections to the MongoDB.
Data API not only addresses the issue of open connections
but also optimizes the overall performance and scalability of
the application, especially when managing multiple
databases dynamically.

Now our import for MongoDBAdapter function in
[…nextauth] file looks like below I am importing it from our
servercomponents Folder from within our application

import { MongoDBAdapter } from "@/servercomponents/MongoDBAdapter"

// import { MongoDBAdapter } from "@auth/mongodb-adapter"

 Kubernetes Setup:

• Multi-Cloud Kubernetes Cluster: Deployed on

Google Cloud Platform (GCP) using Kubernetes for

orchestration and ArgoCD for GitOps-based

continuous deployment.

• Microservices: The Kubernetes cluster runs several

microservices, each in separate deployments:

• StorechooseApp (core platform)

• Upmystandardnext14 (storefront service)

• Storeuiproxy (proxy and caching layer)

• SSLEnable (SSL certificate management)

• TrafficAndUsageStreamRedis (bandwidth tracking

and deduction for API requests)

• TrafficAndUsageStream (bandwidth Deduction

service for media files served by CloudFront)

 CI/CD Pipeline:

• Code changes trigger an automated pipeline:

• Github Actions trigger a new Docker image to be built

and pushed to DockerHub and update the

appropriate Yaml file in the repository for Yaml files.

• The commit hash is used for versioning of Docker

image.

• ArgoCD automatically syncs with the YAML

configuration repository and updates the running

Kubernetes deployments, ensuring seamless and

continuous integration and delivery.

 Scalability & Flexibility:

• This architecture allows easy migration to other cloud

platforms (like Azure or AWS) or even bare-metal servers.

• Multi-cloud strategy leverages free credits on GCP while

using AWS for global load balancing and CloudFront for

media delivery.

• With this approach we can host multiple kubernetes cluster

in different regions all across the world minimizing latency for

users as we are caching data in dragonfly(database for

caching) running within kubernetes. AWS Global Accelerator

will load balance the traffic to different Network load

balancers(NLB)=>RouteGroup(Nginx running on ec2

forwarding TCP traffic to kubernetes cluster hosted on

GCloud or any other service provider or bare metal). But in

some cases like user placing an order the order details

have to go to mongoDb database. And if we are running our

mongoDb cluster in a single region the latency may increase

in this scenario. To address this issue we will enable Global

Cluster Configuration option in mongoDb (it enables Low-

Latency Reads and Writes from anywhere in the world

 Successfully Completed Storechoose.com :

I successfully completed storechoose.com, a project that
took over a year to evolve from an idea to a fully functional
solution.

Initially, my approach involved using Vercel APIs to create a
new Project for each store created, based on the GitHub
repository of (upmystandardnext14). The admin panel was
integrated into the e-commerce website itself. However, this
approach proved to be non-scalable.

To improve scalability and flexibility, I learned Kubernetes
and separated the admin panel's logic from the e-commerce
website. This led to the creation of (storechooseapp) with
some more added features, which made creating and
managing stores much more efficient.

To address security concerns, I developed (SSLEnable), a
microservice written in Node.js. This service generates SSL
certificates using cert-manager and Let's Encrypt for
verified domains (by checking A records).

For caching, I built (storeuiproxy), another Node.js
microservice. All requests to store domains first route
through storeuiproxy, which uses the http-proxy npm
package to proxy requests to (upmystandardnext14). It
caches the responses in Dragonfly (a multithreaded, Redis-
like caching database) for 15 minutes. Subsequent requests
for the same URL (e.g., https://mystore.com) are served
directly from the cache, significantly improving performance.

To implement a pay-as-you-go solution, I developed two
additional microservices:

• TrafficAndUsageStreamRedis: Tracks and deducts
bandwidth for API requests.

• TrafficAndUsageStream: Tracks and deducts
bandwidth for media files served via CloudFront.

This architecture ensures scalability, security, and optimized
performance while supporting a flexible pricing model for the
platform.

 Pricing :

Our basic plan charges ₹150 for 1GB of bandwidth. Based on
our calculations:

• When a user visits a store, around 700 KB of JavaScript
and CSS files are loaded.

• We estimate that a user will explore 40 images, each
compressed to 20 KB, which totals 800 KB (40 × 20).

• This means a user’s browser loads around 1.5 MB of
data per visit.

• Javascript files, CSS files and Images gets cached in the
user’s browser for over 1 year of time period so if the
user’s refreshes the page or come later after some time
or some days it will not result in cosuming another
1.5MB of bandwidth

If 1 GB (1024 MB) is divided by 1.5 MB, we can serve
approximately 682 users per GB. Rounding this up, we assume
700 users.

If the conversion rate (users making a purchase) is 1%, then 7
customers will make a purchase. Dividing ₹150 (the cost of
1GB) by 7 gives a cost of ₹21 per conversion for the store
owner.

Running Costs

The minimum cost for running the infrastructure includes:

1. Kubernetes Nodes (N2 or N instances with 8 cores and
24GB RAM): ₹20,000 per month.

2. Other Costs (AWS Global Accelerator, Network Load
Balancer, RouteGroup, and EC2 running NGINX TCP
streams): ₹10,000 per month.

3. S3 Bucket and CloudFront costs are not fixed like
above two they are relative to the traffic we get, for low
traffic in our initial days they will mostly fall in free tier

So, the total monthly cost is approximately ₹30,000.

Performance

• Each storeuiproxy(serving requests from cache
dragonfly database running within kubernetes)
microservice pod can handle 60 requests per minute.

• With 5 pods of storeuiproxy running, we can handle 300
requests per minute.

Break-Even Point

To cover our monthly cost of ₹30,000 (200Gb of recharge X
Rs150) total requests to handle = (200Gb X 680 requests per
Gb = 1,36,000 requests) :

• We need to handle 1,36,000 requests per month, 4,533
requests per day, which is around 3 requests per
minute.

• Since our infrastructure can handle 300 requests per
minute, achieving the break-even point is well within
capacity.

